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Abstract—What happens when hunger, individual eating con-
straints and student economy are combined with some computer
skills? This contribution introduces a agent-semantic application,
which expedites process of choosing where and what to eat, when
a group of hungry students would like to meet and have lunch
together. Furthermore, individual dietary restrictions are taken
into account. Specifically, software agents are used to facilitate
negotiation mechanisms used to find (i) place to meet, and (ii)
common food, while semantic technologies are used to represent
food and user profiles (i.e. food allergies). The initial system has
been implemented and validated on the basis of selected use case
scenarios.

Index Terms—Software agents, semantic technologies, group
negotiations, individual restrictions.

I. INTRODUCTION

Nasi lemak? Kebab? Paneer tikka? Pizza? Everyday billions
of people face questions, answering which sometimes seems
to require inhuman effort. It is seemingly easy to choose what
one wants to eat, but what if a group is to make a decision?
Moreover, what if there are multiple special deals, e.g. half-
price-off for meals prepared for large groups? Furthermore,
what if the menu has large selection of dishes (even a pizza
place can offer 30+ different pizzas)? Finally, what if some
of future co-feasters have strict dietary restrictions (e.g. no
durian, no pineapple, no crustaceans, etc.)? Obviously, there
must be a way to deal with such situations, as even computer
science students handle it on a day-to-day basis (growing
hunger, and some peer pressure, usually, do the trick). Here,
let us also note that, with growing number of food allergies,
one of important issues is to be able to correctly recognize
what ingredients are involved in creation of a given dish.
Obviously, some people may laugh at warnings of the type:
“this pack of hazelnuts may contain traces of nuts as they were
processed where nuts are processed”, which we can find on
many products in a grocery store. Nevertheless, for someone
allergic to pineapple, being served Hawaiian Pizza, is not
going to be fun. In this context, with modern technology, there
must be a better way than prolonged discussions, or manually
removing dish after dish (case of linear search), when at least
one person in the group states that (s)he will not eat it.

Therefore, we would like to suggest that a solution based
software agents and semantic technologies can be the way of

approaching such problem. Here, software agents are going to
provide the negotiation infrastructure (which is what software
agents are known to be very good at, see [15]), while se-
mantic technologies allow representation of individual dietary
restrictions (see, for instance [14]).

The core use case involves negotiations among a group of
computer science students, who plan to eat together, while
some of them have (known to them) food allergies. Here, let
us note that nowadays, for economic reasons, restaurants 1

may use various marketing strategies to increase their income,
and boost efficiency of their “backend”, i.e. the kitchen.
One of such options may be offering discounts on meals
(or beverages) bought in large quantities. A consequence of
such actions is eagerness of clients (students, in particular)
to buy multiple plates of the same dish (being part of the
promotion). However, this approach requires collaborative
thinking. Reaching the (typical student) goal of eating as
much as possible, while paying as little as possible, involves
dealing with communication abilities, relationships within the
group, self awareness of what one actually wants (and can) eat.
However, it also depends on ability to compromise, persuade,
encourage, or even manipulate each other. For the comfort of
further analysis, and fixing less attention on the sociological
and psychological aspects of the process of finding the com-
mon meal, it is assumed that all “personal preferences” are
put aside (only dietary restrictions are taken into account).

Summarizing, we are interested in the following scenario.
A group of students wants to go together to restaurant and
order large number of portions of the same dish (to reduce
cost), while maximizing satisfaction of constraints imposed by
dietary limitations. To achieve this goal they will use an agent-
semantic application that will perform negotiations on their
behalf to determine the dish they should order (to maximize
price-performance).

To present the developed solution, we proceed as follows. In
Section II we introduce core results concerning: (i) application
of software agents in negotiations, and (ii) use of semantic
technologies to represent food and dietary restrictions. We fol-

1We will use term restaurant to denote any food serving establishment that
can be found “around university campus”, including bars, pubs, etc.
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low with discussion of how semantic technologies (Section III)
and software agents (Section IV), are used in our application.
Next, in Section V, we present technical aspects of the develo-
ped application. Experiments, illustrating how the application
works, in selected cases of “hungry students problem”, are
presented in Section VI. Lastly, Section VII, summarizes our
contributions and suggests further developments.

II. RELATED WORK

Let us start from observing that use of agents in ne-
gotiations, and semantic technologies related to food, has
been described in multiple works. Let us start with how
agents were used in negotiations. First, let us look at the
paper “Semi-Global Leader-Following Consensus of Linear
Multi-Agent Systems With Input Saturation via Low Gain
Feedback” [16]. Here, agents are used not only to simulate a
discussion (the titular consensus), but also to prove that (under
some assumptions) such consensus is achievable. Asymptotic
achievability of reaching a common decision is, obviously,
the main assumption of this project. However, none of the
agents (representing hungry students) is considered to be a
“leader” – big difference. This difference, however, is not
present in the second paper ”Consensus of Linear Multi-Agent
Systems by Distributed Event-Triggered Strategy” [12] which,
apart from consensus reaching process, uses asynchronous
responsive behaviors. What these two papers have in common,
though, is a formal statement that “consensus is reachable”.

On the contrary to previous choices, let us consider use
of agents in smart cities, as reported in “Towards smart city:
M2M communications with software agent intelligence” [6].
Here, the common goal is improving human life with an agent-
oriented solution. To be precise, it highlights the comfort
of transferring H2H (human to human) to M2M (machine
to machine) conversations. Imagine, what if every ”smart
restaurant” had a hub, to which all agents of human clients
could connect, communicate a choose a meal to reduce the
overall cost? Just like in normal life, where there exist many
ways of discussing so that some decision is obtainable, the
very same methods can be, almost directly, migrated to
the agent paradigm. Although, in our solution agents try to
come up with a result by consensus, one could go with an
argumentation-based mechanism, just like the one described in
“Strategic Argumentation in Multi-Agent Systems” [17]. Both,
in consensus and in argumentation approaches, it is crucial to
build-up some knowledge about the subject of a dialog. While,
in the latter option, agents use obtained knowledge to exploit
arguments of others, effectively treating them as opponents,
in the former case agents work together by sharing what they
know so that one of them can announce that consensus has
been achieved, which can be easily checked by querying every
conversation participant if they are fine with that.

Coming back to the concept of “smart restaurant”, one of
fundamentals steps would be to describe the concept of food
and all possible relations in a standardized fashion. Having the
asserted taxonomy, described in a machine-readable format,
one would be able to use computers for performing inference,

potentially extracting non-trivial information even from a
simple knowledge data set. One of such attempts is described
in “User’s Profile Ontology-based Semantic Framework for
Personalized Food and Nutrition Recommendation” [3]. Here,
the ontology engineering has been used in order to provide
mechanisms of obtaining food recommendation based on
many factors – from health conditions to cultural influence.
For instance, for some people controlling blood sugar levels
it may be difficult and often requires help of the experts.
Fortunately, as demonstrated in [4], an automated system
designed specifically for diabetic patients can be created.
Similarly as in our work, by using OWL and SWRL, authors
conduct a research and discuss satisfying outcomes. One of
key features of such recommendation system should be to
make them easily accessible to their users. Authors of [7]
present a whole system for mobile platform, which provides
suggestions about consumed food.

Note that consumers may have not only specific dietary
restrictions, but also somewhat “fuzzy” preferences. Therefore,
food recommending system should have “deep understanding”
about possible offers. Here, a group of researchers, from a food
delivery company, addressed this problem [10]. They used a
graph, representing food, to better understand user queries.
They showed that client may not necessarily be interested only
in the “queried product”, but also in similar ones. For instance,
user might initially search for a Chinese meal, but decide to
order Japanese food. Therefore, a graph-like data structure
can perfectly represent such relations, as is demonstrated
in [9]. This paper describes how various information about the
Turkish cuisine was described using a hierarchical ontology
model. Additionally, semantically described data is linked to
appropriate images of food.

Lastly, note that a well-designed ontology can, and should,
be used for multiple purposes. One of use cases is demonstra-
ted in [5], where authors consider requirements to model food
supply chain, in order to support safety regulations. This paper
demonstrates how multiple food ontologies can be integrated.

III. USE OF SEMANTIC PROCESSING

Let us now describe how semantics provides information
available to negotiating agents. As seen, ontologies can be
used to represent food ingredients and dietary restrictions.
An ontology is an explicit specification of a conceptualiza-
tion [11]. Using an ontology to describe primitive relation of
food ingredients causing an allergy may seem like an overkill.
However, this approach was chosen to facilitate extensibility
and configurability. Generally, there were two possibilities
of obtaining an ontology that could be embedded in our
application. (1) To develop an ontology, precisely matching
food of interest. (2) To use an existing one, developed by
somebody and shared on a free license. Following good
practices of ontology engineering, and taking into account that
ontology development is not our goal, we have selected a well-
known pizza ontology [2]. Note that after a minor extension
(depicted in Figure 1), it can contain information required for
our application. Obviously, change of the underlying domain



representation, to a more mature one, would be necessary for
a real-world system. However, let us stress that this would not
require major changes to the core of the developed application,
thanks to the loose coupling between business logic and
data included in the ontology. For instance, to introduce new
allergies it would be enough to add their classes to the
ontology and define associated SWRL rules.

A. Extension of ontology with allergies, consumer and custom
properties

As stated, in addition to food, we need to represent dietary
restrictions. Let us note that there exists a more mature,
and considerably more detailed ontology, namely the Food
Ontology [8]. It contains a huge amount of ingredients, from
which meals can be composed, and includes more than 200
SWRL (Semantic Web Rule Language) rules, which allow
to express relations between entities using concepts used in
Web Ontology Language: classes, individuals and properties.
It is an appropriate way of sharing the same set of rules
between applications. Furthermore, it allows utilization of
reasoning, based on defined rules. The mentioned ontology
utilizes SWRL rules to describe, which ingredients should be
avoided by a person with one of the four allergies: egg, fish,
gluten and lactose. However, for sake of simplicity, it was not
selected as the knowledge base for our application. Instead,
the pizza ontology has been extended with concepts related to
allergies, which exist in Food Ontology. After defining custom
SWRL rules, describing interaction between pizza toppings
and allergies, the ontology was rich enough to provide non-
trivial reasoning capabilities. Specifically, pizza ontology was
extended with following classes:

• Allergy – a base class representing allergy,
• NutAllergy, LactoseAllergy, etc. – specific allergies,
• Consumer – person who can have allergies and eats food.

The following object properties were also introduced:
• eatsPizza – domain: Consumer, range: Pizza,
• hasAllergy – domain: Consumer, range: Allergy,
• hasNutRisk, hasLactoseRisk, etc. – domain: Consumer,

range: PizzaTopping.
In case, when a more sophisticated ontology was used,

range of hasNutRisk or hasLactoseRisk should be limited to
a particular ingredient, which a person having that allergy

Fig. 1. Extension of pizza ontology – allergy and its subclasses

does not tolerate. Since pizza ontology does not describe
ingredients of pizzas, only toppings have been taken into
account in SWRL rules. Therefore, for the time being, the
range of mentioned properties is PizzaTopping.

B. Using SWRL rules for inferences

One of purposes of using an ontology is to create a reusable
domain representation. SWRL rules make excellent choice for
further describing of the model data, thanks to the reasoning
potential they provide. There are several reasoners capable of
processing such rules (e.g. HermiT, FaCT++ and Pellet). In
our solution, a fork of Pellet, Openllet [1], was chosen. A
sample rule follows:

pizza:Consumer(?c)
ˆ pizza:hasAllergy(?c, ?a)
ˆ pizza:NutAllergy(?a)
ˆ pizza:eatsPizza(?c, ?p)
ˆ pizza:toppingPresent(?p, ?t)
ˆ pizza:NutTopping(?t)
-> pizza:hasNutRisk(?c, ?t)

Here, let Consumer c have an allergy a and suppose that a is
a NutAllergy. In order to determine whether Consumer c can
eat a pizza p, it’s topping t has to be examined. Thus, if t is
a NutTopping, it carries a risk (hasNutRisk) of triggering an
allergy attack in Consumer c.

IV. USE OF SOFTWARE AGENTS

Recall that the purpose of proposed application is to allow
groups of people to negotiate what food (here, which pizza)
they can eat so that the smallest number of different pizzas is
bought (to save money), while considering individual allergies.
Let us now discuss how software agents can facilitate nego-
tiations. The negotiation process consists of three stages: (i)
broadcasting data set (list of available dishes), (ii) consulting
with knowledge bases, and (iii) communicating, to exchange
local knowledge between agents.

In the proposed approach, there are two types of agents –
Waiter and Consumer. A single Waiter (with user interface as
in Figure 2) sends list of available pizzas and waits for the final
order from Consumer agents. Consumer agents are created at
the beginning of application lifetime, and represent “hungry
students”. On creation they are provided with the information
about user allergies, through interface, as in Figure 3.

Determining if a meal can be eaten is achieved through
semantic reasoning. Basically, if one of pizza ingredients
triggers an allergy then the whole pizza has potential of
triggering an allergy. Reasoning is described in Section III-B.

A. Negotiation process

Process of establishing what to eat starts with the waiter
(or employee of the restaurant) coming to the table where the
clients (“hungry students”) are waiting. Then the application
is started, e.g. on a tablet (or a laptop). Next, the waiter
specifies pizzas that are available within the promotion (moves
them to the “available” list). Obviously, such list could be



Fig. 2. Waiter agent window, allowing to compose menu, create new
Consumers and initiate reasoning.

Fig. 3. Consumer agent window, allowing to select user allergies.

also uploaded from the restaurant server. Next, Client agents
(representing users) are initialized and users add their allergies
to each of them (see, Section IV). After these prerequisites are
completed, autonomous negotiations, to determine the meal,
begin.

The Waiter (an agent, not the actual person) broadcasts the
“menu” to all of Consumer agents and waits for their response.
Each Consumer uses knowledge about its user allergies to
prune the menu (using semantic reasoning). If the menu
becomes empty (i.e. there was nothing that could be eaten by
the user, without triggering an allergy risk), Consumer informs
the Waiter and other Consumers that it quits.

Otherwise, Consumer registers itself in the agent platform’s
Yellow Pages Service. The YPS allows agents to determine
where they should send the messages – each Consumer queries
YPS for the list of other Consumers that are to participate in

negotiations of a given group.
Negotiations consist of Consumer selecting an acceptable

pizza, and asking all other Customers if they agree. Other
agents check if this pizza is acceptable and respond with this
information. The initial Consumer collects all responses and
if at least one of them was negative, removes the pizza from
the list of potential dishes. In the meantime, it responds to
the questions asked by other Consumers. Note that it is not
necessary to reason on the ontology again – it is enough for
the Consumer to check if given pizza is on the “safe food
list”. Negotiations stop when a common pizza is found or,
when individual dietary requirements cannot be satisfied (see,
Section VI).

V. TECHNICAL ASPECTS

The core functionality of the proposed approach has been
implemented. We have focused on agent negotiations and use
of semantic reasoning. Obviously, the proposed approach has
been developed to be implemented as a mobile application.
However, technical issues introduced by placing agents on
mobile devices and running application over the Internet were
out of scope of current contribution. Keeping this in mind, let
us now describe the key technical aspects of the implemented
approach. Here, note that these choices would remain the same
if the application was to run on mobile devices.

Waiter and Customer agents (and their interactions) have
been implemented using Java Agent Development Framework
(JADE). JADE provides programmer with an agent abstraction
model, task execution mechanisms, peer to peer agent com-
munication and a Yellow Pages Service.

To extract information from the ontology, Apache Jena
was chosen. Jena provides support for ontologies built using
RDF Schema and OWL. The underlying language, used for
representing given ontology, is transparent when using Jena
framework. Its interface is simple and intuitive. For instance,
to get a reference to given class which exists in ontology, one
has to use the following code:

OntClass consumerOntClass =
ontModel.getOntClass(ONTOLOGY_NS +
"Consumer");

where ONTOLOGY NS is the namespace of given ontology
and the method itself is invoked on the loaded ontology model.
To create an individual of this class it is enough to call:

Individual consumerIndividual =
ontModel.createIndividual(ONTOLOGY_NS +
consumerName, consumerOntClass);

where the method is called on the loaded ontology and the
consumerOntClass is a class from the model, extracted earlier.

Ontologies allow using a reasoner to derive non-trivial facts
about modeled concepts. For this purpose, Jena exposes an
inference API. For our application, Openllet [1] was selected.
However, any other reasoner could have been used. Reasons
behind this choice were: compatibility with Jena, full support
for OWL 2, support for SWRL, and the fact that the original



Pellet is no longer an open-source project. To configure it, an
ontology has to be loaded:

Model model =
FileManager.get().loadModel(ONTOLOGY_PATH,
"RDF/XML");

Here, the asserted model is loaded from the file with path ON-
TOLOGY PATH, using Jena’s FileManager static helper class
instance. It was also instructed that the given file complies
with the RDF format. Then, Openllet’s specification has to be
used when creating actual inferred ontology model:

import static PelletReasonerFactory.THE_SPEC;
// ...
OntModel ontModel =

ModelFactory.createOntologyModel(THE_SPEC,
model);

Again, we use static helper method of Jena’s ModelFactory,
providing it with Pellet’s OntModelSpec (PelletReasonerFac-
tory.THE SPEC), which encapsulates description of compo-
nents of the ontology model, including the reasoner. As a
second argument we provide the Model that was loaded from
the file. Although Jena’s OntModel is a subclass of Model
and they can be used in the similar way, it is the former that
contains knowledge, inferred by the reasoner. This allows to
easily distinguish between asserted an inferred knowledge.

User interface has been created in JavaFX, standardized
alternative to Swing toolkit, equipped with many mechanisms
used in modern programming like data binding or stylesheets.

In order to wrap all components, and provide dependency
injection mechanisms, Spring Boot – a Spring’s convention-
over-configuration solution for creating easily runnable appli-
cations – has been chosen. It substantially decreases amount of
configuration necessary to start Spring and facilitates creating
easily-readable, modular and extensible code.

VI. EXPERIMENTAL VERIFICATION

The proposed application has been thoroughly tested. Here,
we report only two core scenarios.

A. When everything goes well

Let us start with an optimistic scenario. Suppose that the
group of users does not have many dietary restrictions and
may eat majority of available pizzas. The scenario proceeds
as described in Section IV-A). The Waiter sends list of
pizzas to all participating Consumers. They establish which
pizzas are acceptable and start sending proposals to others
(one to many communication), choosing pizzas from the list.
Simultaneously, on the receiving end, they verify if received
proposals are “OK”.

Negotiations can become complicated, see Figure 4). Fi-
nally, if one of pizzas is accepted by everybody, agent that
suggested it sends the decision to the Waiter. When the Waiter
gets such information from any of the agents, it closes nego-
tiations (as consensus has been reached) and displays results
(see, Figure 5). Note that the first message that reaches the
Waiter specifies pizza to be ordered. While it is possible that,

Fig. 4. JADE sniffer, showing communication between Waiter and Consumer
agents. It can be easily seen how Waiter uses PROPAGATE message to
distribute menu and Consumers use PROPOSE messages to suggest pizzas
to other agents

Fig. 5. Result window, showing the order. We can see that it was chosen by
consensus by all Customer agents.

while the first winning pizza is communicated to the Waiter,
another pizza is found to be acceptable as well (negotiations
have not been closed, yet), message informing that this pizza
was selected is discarded, as the Waiter already has a winner
for this group.

B. When NOT everything goes well

Now we will go through a pessimistic scenario, where the
dietary restrictions prevent reaching consensus. The beginning
of the negotiation process is the same. The Waiter sends
list of available pizzas, Customers start proposing, accepting,
rejecting. Let us now assume that there is (at least) one person



Fig. 6. Result window, showing the order consisting of two pizzas. A case
when more than one pizza is chosen is possible only when the panic behavior
occurs – in this case, one of the Consumers has triggered panic behavior and
ordered extra pizza.

that has dietary requirements that introduce problems the case
of the particular group. After negotiations including proposals,
acceptances and rejections Customer agent, representing this
person, is left with no pizza “OK” for the user (let us name
this case: “panic behavior”). Here, Customer contacts the
Waiter directly, and asks for a personalized meal. Moreover,
it informs other Customers that it is out of negotiations. In
this case, remaining Customers start negotiating anew. After
Waiter receives information that remaining Consumers reached
consensus, a result window appears, showing more than one
pizza to be ordered (see Figure 6).

VII. CONCLUDING REMARKS

Let us note first that the problem of making a group
decision has already found many solutions in the human
history. Dictatorship, democracy, consensus and many more
proved to be effective in various situations and circumstances.
Nevertheless, while the purpose of the project was not to find
the most efficient way to decide what to eat together, the
results appeared to be quite satisfying and far more effective
than we have expected.

Moreover, what has been implemented in the prototype
includes only very preliminary functionalities, while the ex-
tensibility and modularity of the proposed approach allows
comfortable future development of the software to even more
complicated and universal solution. Let us list some of the
considered directions of development.

First, as indicated above, there exists Food Ontology that
covers much larger domain and includes substantially larger
number of rules. It will be included in the application. Note
that it can be easily extended with rules covering additional
allergies.

Second, in addition to food restrictions, user preferences
will be added. Hence, not only unacceptable meals will be

eliminated, but expressions like “I like that one more than the
other” will be captured. Here, experiences from [13] will be
applied. Specifically, weight will be added to dishes (as an
annotation within the ontology) and used in negotiations.

Third, a planned technical upgrade is to migrate the applica-
tion to a mobile solution, adding support for multiple clients,
and perhaps even connecting complete strangers, with the goal
of eating cheaper (Groupon-type solution). Here, possibility of
integrating the proposed approach with personal assistants like
Alexa, Cortana or Google Assistant will be also considered.

Finally, taking into account that the developed application
will have food knowledge-base, combined with representation
of allergies, it will be possible to naturally combine it with
information about exercises to develop a more complex appli-
cation facilitating all around fitness support. Here, obviously,
ontology of fitness will have to be developed (or found and
applied).
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